Massive Geomagnetic Storm: Coronal Mass Ejection From the Sun Could Knock Out the Power Grid and Internet
Telegraph networks all throughout the globe failed catastrophically on September 1 and 2, 1859. The telegraph operators reported feeling electrical shocks, telegraph paper catching fire, and being able to operate equipment without batteries. The aurora borealis, sometimes known as the northern lights, could be seen as far south as Colombia in the evenings. This phenomenon is typically only seen at higher latitudes, such as in northern Canada, Scandinavia, and Siberia.
The planet was hit by a tremendous geomagnetic storm on that day, which is now known as the Carrington Event. When a massive bubble of superheated gas called plasma is blasted from the sun’s surface and collides with the Earth, it causes these storms. This bubble is called a coronal mass ejection.
The plasma of a coronal mass ejection consists of a cloud of protons and electrons, which are electrically charged particles. When these particles reach the Earth, they interact with the magnetic field that surrounds the planet. This interaction causes the magnetic field to distort and weaken, which in turn leads to the strange behavior of the aurora borealis and other natural phenomena. As an electrical engineer who specializes in the power grid, I study how geomagnetic storms also threaten to cause power and internet outages and how to protect against that.
Sign-up to receive current EMF NEWS and most recent BLOGS